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Introduction

This reading project is based off of Chapter 8 of the 2nd edition of ’Probability Theory - an

Analytic View’ by Daniel W. Stroock.

Our aim in this report is to generalize the notion of Brownian motion to any separable

Banach space, and construct an abstract space that captures the same basic properties as

that of Brownian motion in RN . This work was pioneered by Wiener and then continued

by Lévy, Cameron, Martin, then the likes of Kolmogorov, Varadhan and many more. We

are looking at the distribution of Brownian motion, which is called the Wiener measure,

as he was the first to construct it. We construct it the same way he did: as a Gaussian

measure on an infinite dimensional space. Specifically, given a Banach space E, we look at

such measures which are centered Gaussian measures on E (centered as in having 0 mean),

i.e., for each x∗ ∈ E∗, x ∈ E 7→ ⟨x, x∗⟩ ∈ R is a Gaussian random variable with 0 mean.

1 Constructing the Classical Wiener Measure

1.1 The Classical Wiener Space

In general, we look at Brownian paths as continuous real values functions, i.e., B(t) ∈
C([0,∞);RN). The problem with this, however, is that this space is NOT a Banach space.

Hence, we need to shrink our space to make it a Banach space, and from there we can

continue our investigation.

As we know that B(0) = 0 and limt→∞ t−1|B(t)| = 0, we look at the space Θ(RN) of all

continuous paths θ : [0,∞) → RN with the property that θ(0) = 0 and limt→∞ t−1|θ(t)| = 0.

We now arrive at the first significant lemma of our study:

Lemma 1.1 The space (Θ(RN), ∥.∥Θ(RN )) is a Banach space that is continuously embedded

as a Borel measurable subset of C(RN), where ∥.∥Θ(RN ) is a lower semi-continuous map given

by

θ ∈ C(RN) 7→ ∥θ∥Θ(RN ) ≡ sup
t≥0

|θ(t)|
1 + t

∈ [0,∞]

Furthermore, the dual space Θ(RN)∗ can be identified with the space of RN -valued Borel
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measures λ on [0,∞) such that λ({0}) = 0 and

∥λ∥Θ(RN )∗ ≡
∫
[0,∞)

(1 + t)|λ|( dt)

where |λ| stands for the variation measure determined by λ. The duality relation for any

θ ∈ Θ(RN) is given by

⟨θ,λ⟩ =
∫
[0,∞)

θ(t) · λ( dt)

Lastly, if (B(t),Ft,P) is an RN - values Brownian motion, then B ∈ Θ(RN) P-almost surely

and EP[∥B∥2Θ(RN )] ≤ 32N.

■

This lemma gives us a base to work off of, i.e., it shows that the space Θ(RN) is actually a

separable Banach space (through lower semi-continuity of the norm), and that it contains

all Brownian paths almost surely. It also gives us a convenient way to identify its dual space

as a subspace of the functions of finite total variation.

In view of this fundamental lemma, we see that the distribution induced by the RN -valued

Brownian motion gives us a Borel measure WN on a separable Banach space Θ(RN). This

is what we call the classical Wiener measure.

1.2 The Classical Wiener Measure

We will now try to characterize the classical Wiener measure, and we use the following fact

about probability measures on a separable Banach space.

Lemma 1.2 Let E be a separable Banach space and E∗ denote its dual space. Then the Borel

field BE coincides with the sigma field generated by the maps x ∈ E 7→ ⟨x, x∗⟩ ∈ R for each

x∗ ∈ E∗. Furthermore, if for µ ∈ M1(E), we define its characteristic function/Fourier

transform µ̂ : E → C by

µ̂(x∗) =

∫
E

exp[
√
−1⟨x, x∗⟩]µ( dx)

then this is a weak* continuous function on Θ∗ and if µ, ν ∈ M1(Θ) such that µ̂ = ν̂, then

µ = ν.

■
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This lemma gives us an important tool we can use to identify the Wiener measure, as we

see that as long as any measure satifies the above property, we can liken it to the classical

Wiener measure and treat it the same way. We now use this lemma to find the characteristic

function of WN . Let (·, ·)V to denote the inner product associated with the inner-product

space V.

Given an RN -valued Brownian motion B(t), note that the set {(ξ,B(t))RN : t ≥ 0, ξ ∈ RN}
spans a Gaussian family in L2(P,R). Hence, as the distributions of Brownian motion induce

the Wiener measure on the set Θ(RN), we see that the set {(ξ,θ(t))RN : t ≥ 0, ξ ∈ RN}
spans a Gaussian family in L2(WN ,R). Now, for any λ ∈ Θ(RN), as ⟨θ,λ⟩ is an integral, it

can be seen as a limit of Riemann sums, which are all centred Gaussian random variables.

Thus, we see that θ 7→ ⟨θ,λ⟩ is a centered Gaussian random variable (limit of Gaussians is

Gaussian as long as convergence is guaranteed).

Thus, the characteristic function of WN is

WN
∧

(λ) =

∫
RN

exp[
√
−1⟨θ,λ⟩]WN( dx) = exp

(
−1

2

∫
RN

[⟨θ,λ⟩]2WN( dx)

)
To show that equality, we have used the classical proof of the Gaussian characteristic function

in R, and extended it to RN . Now, for a Brownian motion B(t), as B(s + t) − B(t) is

independent of B(t) ∀ s, t ∈ RN , we see that for s, t ∈ RN , 0 ≤ s ≤ t,

EWN

[(ξ,θ(s))RN · (η,θ(t))RN ] = EWN

[(ξ,θ(s))RN · [(η,θ(s))RN + (η,θ(t− s))RN ]]

= EWN

[(ξ,θ(s))RN · (η,θ(s))RN ] = s(ξ,η)RN

Thus, we use Fubini’s theorem to now see that

EWN [⟨θ,λ⟩2] = ∫∫
[0,∞)2

s ∧ tλ( ds)λ( dt)

and this directly gives us

WN
∧

(λ) = exp

(
−1

2

∫∫
[0,∞)2

s ∧ tλ( ds)λ( dt)
)

Thus, we have shown that WN is a centered Gaussian measure on Θ(RN) and for each

λ ∈ Θ(RN)∗, the function θ 7→ ⟨θ,λ⟩ is a centered Gaussian random variable with variance∫∫
[0,∞)2

s ∧ tλ( ds)λ( dt).

1.3 The Cameron-Martin Space

We start with a technical lemma needed for multiple theorems ahead. We will not mention

the proof here.
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Lemma 1.3 Let E be a separable real Banach space and suppose that H ⊆ E is a real

Hilbert space that is continuously embedded as a dense subspace of E. Then:

1. For each x∗ ∈ E∗ there is a unique hx∗ ∈ H such that (h, hx∗)H = ⟨h, x∗⟩ for all h ∈ H,

and the map x∗ 7→ hx∗ is linear, continuous, one-to-one and onto a dense subspace of

H.

2. If x ∈ E, then x ∈ H if and only if there is a K < ∞ such that |⟨x, x∗⟩| ≤
K∥hx∗∥H ∀ x∗ ∈ E∗. Moreover, for each h ∈ H, ∥h∥H = sup{⟨h, x∗⟩ : x∗ ∈ E∗ &

∥x∗∥E∗ ≤ 1}.

3. If L∗ is a weak∗ dense subspace of E∗, then there exists a sequence {x∗n, n > 0} ⊆ L∗

such that {hx∗
n
, n > 0} is an orthonormal basis for H. Moreover, if x ∈ E, then x ∈ H

if and only if
∑∞

n=0⟨x, x∗n⟩2 <∞. Finally,

(h, h′)H =
∞∑
n=0

⟨h, x∗n⟩⟨h′, x∗n⟩ ∀ h, h′ ∈ H.

■

We have shown that the Wiener measure is a centered Gaussian measure on a Banach space.

However, we would love to look at it as a standard Gaussian measure on a Hilbert space (due

to its much nicer properties). In finite dimensions, this is quite easy to do, as any centered

Gaussian measure on RN can be seen as a standard Gaussian measure on a Hilbert space

H. We show this by taking a Gaussian measure X on RN with mean 0 and non-degenerate

covariance matrix C. We look at H, the Hilbert space constructed by taking RN with the

inner product (a, b)H = (a,Cb)RN . If we take λH to be the standard Lebesgue measure

generated on H, we see that

X
∧
(h) = exp

(
−∥h∥2H

2

)
Thus, X is uniquely determined to be the standard Gaussian measure on H (Lemma 1.2).

However, this does not work in infinite dimensions. We may try to guess the space H where

the Wiener measure might live by simply passing the limit of N to infinity in the distribution

of X (á la Feynman). This gives us a näıve guess of H being the space H(RN) which is the

space of all absolutely continuous functions h : [0,∞) → RN with h(0) = 0 and

∥h∥H(RN ) = ∥ḣ∥L2([0,∞);RN ) <∞
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Now we show that this is indeed the required Hilbert space. Note that for any h ∈ H(RN),

|h(t)| ≤ t
1
2∥h∥H(RN ) =⇒ =⇒ t−1|h(t)| ≤ t−

1
2∥h∥H(RN ) → 0 as t→ ∞

Thus, h ∈ Θ(RN) and ∥h∥Θ(RN ) ≤ 1
2
∥h∥H(RN ). Also, as C∞

c ([0,∞),RN) is dense in Θ(RN)

and C∞
c ([0,∞),RN) ⊆ H(RN) ⊆ Θ(RN), we have that H(RN) is continuously embedded as

a dense subset of Θ(RN).

Thus, from Lemma 1.3, we see that Θ(RN)∗ can be identified as a dense subspace of

H(RN)∗ ≡ H(RN) and for each λ ∈ Θ(RN)∗ there is a unique hλ ∈ H(RN) such that

(h, hλ)H(RN ) = ⟨h,λ⟩ for all h ∈ H(RN). In fact,

⟨h,λ⟩ =
∫
[0,∞)

h(t) · λ( dt) =
∫
[0,∞)

(∫
[0,t)

ḣ(τ) dτ

)
· λ( dt)

=

∫
[0,∞)

ḣ(τ) · λ((τ,∞)) dτ, (Fubini’s Theorem)

= (h, hλ)H(RN ), hλ(t) =

∫
(0,t]

λ((τ,∞)) dτ.

Now, we finally see that

∥hλ∥2H(RN ) =

∫
(0,∞)

|λ((τ,∞))|2 dτ =

∫∫
(0,∞)2

s ∧ tλ( ds)λ( dt)

Hence, we see that the characteristic function of the Wiener measure is represented by

WN
∧

(λ) = exp

(
−
∥hλ∥2H(RN )

2

)
, λ ∈ Θ(RN)∗

which is exactly the characteristic function of the standard Gaussian measure. Thus, on this

space, they are both equivalent (using Lemma 1.2). Thus the space H(RN) is indeed the

Hilbert space we were looking for. This space is called the Cameron-Martin space for

the classical Wiener measure. Also, the triple (H(RN),Θ(RN),WN) is called the classical

Wiener space.

2 Abstract Wiener Spaces

2.1 The Basic Structure Theorem

We now move on to more general circumstances, i.e., we will show that given a Banach space

E and a non-degenerate Gaussian measure W
(
EW [⟨x, x∗⟩2] = 0 if and only if x∗ = 0

)
on E,
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it has the same structure as the classical Wiener measure on Θ(RN), and thus they can be

viewed equivalently. Furthermore, there is a continuously embedded Hilbert Space H in E

such that W is the standard Gaussian measure on H. We thus call any triple (H,E,W)

which shares the same properties as the classical Wiener space an abstract Wiener Space.

Theorem 2.1 Suppose that E is a separable real Banach space and that W is a centered

Gaussian measure on E. Then there exists a unique Hilbert space H such that (H,E,W) is

an abstract Wiener space.

The proof of this theorem is done in a roundabout way, by starting with uniqueness and then

showing existence using some results proved during the uniqueness side of things. Suppose

that H is a Hilbert space which satisfies the Theorem. Then ∀ x∗, y∗ ∈ E∗, ⟨hx∗ , y∗⟩ =

(hx∗ , hy∗)H = ⟨hy∗ , x∗⟩. Furthermore, ⟨hx∗ , x∗⟩ = ∥hx∗∥2H =
∫
⟨x, x∗⟩2W( dx).

Thus, we see that

⟨hx∗ , y∗⟩ =
∫

⟨x, x∗⟩⟨x, y∗⟩W( dx) =

〈∫
⟨x, x∗⟩xW( dx), y∗

〉
(1)

Now, we use Fernique’s Theorem to check that∫
∥⟨x, x∗⟩x∥EW( dx) ≤

(∫
∥⟨x, x∗⟩∥2EW( dx)

) 1
2

·
(∫

∥x∥2EW( dx)

) 1
2

= C∥hx∗∥2H <∞

(2)

Thus, we can safely see that

hx∗ =

∫
⟨x, x∗⟩xW( dx) (3)

Given h ∈ H, pick {x∗n : n ≥ 1} ⊆ E∗ so that hx∗
n
→ h in H. Then we get lim sup ∥⟨·, x∗n⟩ −

⟨·, x∗m⟩∥L2(W,R) = lim sup ∥hx∗
n
− hx∗

m
∥H = 0. So if Ψ denotes the closure of {⟨·, x∗⟩ : x∗ ∈

E∗} in L2(W ,R) and F : Ψ → E is given by

F (ψ) =

∫
xψ(x)W( dx), ψ ∈ Ψ,

then h = F (ψ) for some ψ ∈ Ψ. Conversely, if ψ ∈ Ψ such that there are {x∗n : n ≥ 1} and

⟨·, x∗⟩ → ψ in L2(W ,R), then hx∗
n
converges to h in H and to F (ψ) in E. Thus, h = F (ψ).

Combining both, we get that H = F (Ψ) and this shows uniqueness.

For existence, we need only show that if Ψ and F are defined as above and if H = F (Ψ),

then (H,E,W) is an abstract Wiener space. Now we see that

⟨F (ψ), x∗⟩ =
∫
⟨x, x∗⟩ψ(x)W( dx) = (F (ψ), hx∗)H
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and thus hx∗ has the same description as that given in (1) and (3). We also notice that ∥hx∗∥2H
is simply the variance of ⟨·, x∗⟩, which is a centered Gaussian random variable. Thus, the

characteristic function of W is given by

W
∧

(x∗) = exp

(
−1

2
EW [⟨x, x∗⟩2]

)
= exp

(
−∥hx∗∥2H

2

)
Thus, W is the standard Gaussian measure on H. We also see that similar to (2), ∥F (ψ)∥E ≤
C∥ψ∥L2(W,R) = C∥F (ψ)∥H , so H is continuously embedded in E. Finally, we use the Hahn-

Banach theorem and the fact that ψ = ⟨·, x∗⟩ to show that H is dense in E. Thus, we

get that H is continuously embedded as a dense subspace of E and the centered Gaussian

measure W on E is equivalent to the standard Gaussian measure on H. This is equivalent

to saying that the triple (H,E,W) is an abstract Wiener space.

■

2.2 The Cameron-Martin space and the Paley-Wiener map

Given an abstract Wiener space (H,E,W), we call H the Cameron-Martin space of the

abstract Wiener space. The theorem below outlines some interesting properties of H, of

which we shall only prove the second part.

Theorem 2.2 1. If (H,E,W) is an abstract Wiener space, then the map x∗ ∈ E∗ 7→
hx∗ ∈ H is continuous from the weak∗ topology on E∗ into the strong topology on H.

In particular, ∀ R > 0, {hx∗ : x∗ ∈ BE∗(0, R)} is a compact subset of H, BH(0, R)

is a compact subset of E, so H ∈ BE. Furthermore, when E is infinite dimensional,

W(H) = 0.

2. There is a unique linear, isometric map I : H → L2(W ,R) such that I(hx∗) =

⟨·, x∗⟩ ∀ x∗ ∈ E∗ and {I(h) : h ∈ H} is a Gaussian family in L2(W ,R).

We define I(hx∗) = ⟨·, x∗⟩. Then, for each x∗, I(hx∗) is a centered Gaussian random variable

with variance ∥hx∗∥2H . Thus, I is a linear isometry from {hx∗ : x∗ ∈ E∗} into L2(W ,R).
Now, as {hx∗ : x∗ ∈ E∗} is dense in H (by Lemma 1.3), we can extend the map to a linear

isometry from H into L2(W ,R), and this is the required map. Moreover, as the L2-limit of

centered Gaussians is again centered Gaussian, I(h) is centered Gaussian ∀ h ∈ H.

■
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This map I is called the Paley-Wiener map. We can look at {hx∗ : x∗ ∈ E∗} as the set

of g ∈ H such that the map h → (h, g)H admits a continuous extension to E. Even though

for infinite dimensional H, this doesn’t actually work (no continuous exntension exists),

we see that I(h) does the same job as the map above, although only upto a W-null set.

Furthermore, if we were to adopt this line of thinking, we see that

EW [exp(√−1I(h))
]
= exp

(
−∥h∥2H

2

)
, h ∈ H

Thus if W were on H, it would definitely be the standard Gaussian measure.

One final thing we note about the Paley-Wiener map is its use in the property of Gaussian

measures under translation. If y ∈ H and τy : E → E such that τy(x) = x + y, we look at

the measure (τy)∗W . We posit that it will have the characteristic function

(τy)∗W
∧

(h) = exp

(
−∥h− y∥2H

2

)
= exp

[
(h, y)H − ∥y∥2H

2

]
· exp

(
−∥h∥2H

2

)
Hence, if we assume that I(y) gives us the correct representation for (·, y)H , then we can

guess that

[(τy)∗W( dx)] ( dh) = Ry(x)W( dx), where Ry = exp

[
I(y)− ∥y∥2H

2

]
The fact that the above is true was proved by Cameron and Martin, and this is why it is

called the Cameron-Martin Formula.

2.3 From Hilbert to Abstract Wiener Spaces

Up until now, we were given a Banach space E and a centered Gaussian measure W and we

constructed a Hilbert space H which made the triple an abstract Wiener space. Now, we go

the other way around.

We will only work with real, infinite dimensional and separable spaces from now on. As

we know that all real, infinite dimensional and separable Hilbert spaces are isometrically

isomorphic to each other, we show that the same holds for abstract Wiener spaces.

Theorem 2.3 Let H and H ′ be a pair of Hilbert spaces, and suppose that F is a linear

isometry from H onto H ′. Further, suppose that (H,E,W) is an abstract Wiener space.

Then there exists a separable, real Banach space E ′ ⊇ H ′ and a linear isometry F̃ from E

onto E ′ such that F̃ ↾ H = F and (H ′, E ′, F̃∗W) is an abstract Wiener space.
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We define ∥h′∥E′ = ∥F−1h′∥E for h′ ∈ H ′ and we let E ′ be the completion of H ′ with respect

to the above norm. We see that H ′ is continuously embedded in E ′ as a dense subspace

and F admits a unique extension F̃ as a linear isometry from E onto E ′. Furthermore, if

(x′)∗ ∈ E ′∗ and F̃ T is the adjoint map from (E ′)∗ onto E ′, then

(h′, h′(x′)∗)H′ = ⟨h′, (x′)∗⟩ = ⟨F−1h′, F̃ T (x′)∗⟩ = (F−1h′, h′
F̃T (x′)∗

)H = (h′, Fh′
F̃T (x′)∗

)H′

and thus, h′(x′)∗ = Fh′
F̃T (x′)∗

, and we get

EF̃∗W
[
e
√
−1⟨x′,(x′)∗⟩

]
= EW

[
e
√
−1⟨F̃ x,(x′)∗⟩

]
= EW

[
e
√
−1⟨x,F̃T (x′)∗⟩

]
= e(−

1
2
∥h

F̃T (x′)∗∥
2
H) = e

(
− 1

2
∥F−1h′

(x′)∗∥
2
H

)
= e

(
− 1

2
∥h′

(x′)∗∥
2
H

)

Thus, (H ′, E ′, F̃∗W) is an abstract Wiener space.

■

Now, given any separable real Hilbert space H, let F : H(R) → H be an isometric isomor-

phism. So by the above theorem, we can see that there exists a separable Banach space E

and an isometric isomorphism F̃ : Θ(R) → E such that (H,E, F̃∗W1) is an abstract Wiener

space.

We now look at multiple ways of constructing an abstract Wiener space from a Hilbert space,

one of which was adopted by Lévy in his polygonalization construction of Brownian motion.

What we plan to do is choose an orthonormal basis of {hn : n ≥ 1} of H, and as W is the

standard Gaussian measure on H, Xn(h) = (h, hn)H are all iid Gaussian random variables,

and for each h ∈ H, the series
∑∞

n=1Xn(h)hn converges to h in H. So what we do is start

with a sequence of iid standard normal random variables {Xn : n ≥ 1} and look at the

Banach space E where the series
∑∞

n=1Xn(h)hn converges with probability 1 for all h ∈ H.

Then we take W to E, and we have our abstract Wiener space.

Both Lévy and Wiener chose different orthonormal bases for their construction of Brownian

motion, and this can be found in (Stroock, p. 319). Theorem 8.3.3 (Stroock, p. 320) gives us

a thoeretical backdrop to perform these computations, and essentially guarantees that given

the existence of Brownian motion (or in general, any Wiener measure), there are several

ways to construct it.

We now show an important fact about the relation between the abstract Wiener measure W
and the Banach space E where it resides.

Theorem 2.4 If W is a non-degenerate, centered Gaussian measure on a separable Banach

space E, then E is the support of W in the sense that W assigns positive probability to every

non-empty open subset of E.
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Let H be the Cameron–Martin space for W . Since H is dense in E, we just need to show

that W(BE(g,R)) > 0 ∀ g ∈ H & R > 0. Moreover, by the Cameron–Martin formula we

have W(BE(g,R)) > C · W(BE(0, R)) for some C > 0. Now, we choose an orthonormal

basis {hn : n ≥ 1} and let Sm =
∑m

n=1Xn(h)hn. Then, using theorem 8.3.3, we see that

W(BE(0, R)) ≥
1

2
W(∥Sn∥E <

R

2
) ≥ γn+1

0,1 (BRn+1(0,
R

2C0

)) > 0, ∀ R > 0

where C0 > 0 and γn+1
0,1 is the standard Gaussian measure on Rn+1.

■

This essentially shows us that E is the ’smallest’ such Banach space from which we can

construct an abstract Wiener space in the sense that every subset of E has positive W-

probability.

2.4 Orthogonality

We move our attention now to orthogonality issues, as they are extremely important to

enable the construction of abstract Wiener spaces, in particular, the construction of the

required Banach space E from the Hilbert space H. Given a closed linear subspace L of H,

we define the projection map ΠL : H → L such that for each h ∈ H, h− ΠLh ⊥ L. We will

see that if (H,E,W) is an abstract Wiener space and L is a finite dimensional subspace of

H, then ΠL can be almost surely extended to PL on E, and also that PLx→ x in L2(W , E)

as L ↑ H.
There are a few theorems mentioned in (Stroock, 2010), namely Theorems 8.3.7, 8.3.8 and

8.3.9 regarding the various properties of the projection maps and its relation to the Paley-

Wiener map. I will write down the theorems, but will not prove them.

Theorem 2.5 (8.3.7) Let (H,E,W) be an abstract Wiener space and {hn : n ≥ 0} be

an orthonormal basis in H. Then, for each h ∈ H,
∑∞

m=0(h, hm)HI(hm) converges to I(h)
almost surely and in Lp(W ,R) for every p ∈ [1,∞).

Theorem 2.6 (8.3.8) Let (H,E,W) be an abstract Wiener space. For each finite dimen-

sional subspace L of H there is an almost surely unique map PL : H → L such that for every

h ∈ H and almost surely every x ∈ E, (h, PLx)H = I(ΠLh)(x). Further, if dim(L) = k and

{g1, . . . , gk} is an orthonormal basis for L, then PLx =
∑k

i=1 [I(gi)] (x)gi, and thus PLx ∈ L

for almost every x in E. Finally, X → PLx is W−independent of x→ x− PLx.
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Theorem 2.7 (8.3.9) Let (H,E,W) be an abstract Wiener space and {hn : n ≥ 0} be an

orthonormal basis for H. Set Ln = span({h0, h1, . . . , hn}). Then, for all ϵ > 0, there is

an n ∈ N such that EW [∥PLx∥2E] ≤ ϵ2 whenever L is a finite dimensional subspace that is

perpendicular to Ln.

An important thing to note is that this construction of E is by no means unique, in fact

there are uncountably many such E which give rise to an abstract Wiener space. We show

this in the following theorem:

Theorem 2.8 If (H,E,W) is an abstract Wiener space, then there exists a separable Ba-

nach space E0 that is continuously embedded in E as a measurable subset and has the proper-

ties that W(E0) = 1, bounded subsets of E0 are relatively compact in E, and (H,E0,W ↾ E0)

is again an abstract Wiener space.

I will show the outline of the proof here, and the details can be found in (Stroock, 2010, p

324).

We choose {x∗n;n ≥ 0} ⊆ E∗ so that {hx∗
n
: n ≥ 0} is an orthonormal basis for H. We

set Ln = span({hx∗
0
, hx∗

1
, . . . , hx∗

n
}). Using Theorem 2.7, we choose an increasing sequence

{nm}m≥0 so that n0 = 0 and EW [∥PLx∥2E]
1
2 ≤ 2−m for m ≥ 1 and finite dimensional

L ⊥ Lnm . We now define Ql on E into H such that

Q0x = ⟨x, x∗0⟩hx∗
0
and Qlx =

nl∑
n=nl−1+1

⟨x, x∗n⟩hx∗
n

when l ≥ 1

Finally, we take Sm =
∑m

l=0Ql, and define E0 to be the set of x ∈ E such that

∥x∥E0 ≡ ∥Q0x∥E +
∞∑
l=1

l2∥Qlx∥E <∞ and ∥Smx− x∥E → 0.

The rest of the proof shows that ∥ · ∥E0 is a norm on E0 and this gives us a Banach space.

It goes on to show that the triple (H,E0,W ↾ E0) is an abstract Wiener space. Thus, for

any Hilbert space, there are infinitely many abstract Wiener spaces possible, depending on

the choice of E.

■

We now move on to the concept of orthogonal invariance and, in particular, the extension

of teh orthogonal invariance property of Gaussian measures on a finite Banach space to the

infinite dimensional case. We know that the standard Gaussian measure on RN is invariant
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to any rotational transformation. In particular, if O is any orthogonal matrix, then the

Gaussian measure is invariant under the map TO : RN → RN such that TO(x) = Ox. We

now look at the analogue when RN is replaced by an abstract Wiener space (H,E,W). We

see the following result:

Theorem 2.9 Let (H,E,W) be an abstract Wiener space and O an orthogonal transfor-

mation on H. Then there is a W-almost surely unique, Borel measurable map TO : E → E

such that I(h) ◦ TO = I(OTh) almost surely for each h ∈ H. Moreover, W = (TO)∗W.

To prove existence, we choose an orthonormal basis {hn : n ≥ 0} for H and let C be the

set of x ∈ E for which both
∑∞

m=0 [I(hm)] (x)hm and
∑∞

m=0 [I(hm)] (x)Ohm converge in E.

Now, we use Theorem 8.3.3 of (Stroock, 2010) to show that W(C) = 1 and that

x→ TOx ≡


∑∞

m=0 [I(hm)] (x)Ohm x ∈ C

0 x /∈ C

has a distribution W . Hence, we have proved that TO exists almost surely. We just need to

show that I(h) ◦ TO = I(OTh) almost surely for each h ∈ H. We see that

[I(hx∗)] (TOx) = ⟨TOx, x∗⟩ =
∞∑
n=0

(hx∗ ,Ohm)H [I(hm)] (x) =
∞∑
n=0

(OThx∗ , hm)H [I(hm)] (x)

which, by Theorem 2.5, converges almost surely to I(OThx∗). Thus, we have that I(h)◦TO =

I(OTh) almost surely. To show that this is true for all h ∈ H, we see that h 7→ I(h) ◦ TO
and h 7→ I(OTh) are both isometric maps and are equal on {hx∗ : x∗ ∈ E∗}, which is dense

in H. Thus they are also equal on H, and we have proved existence.

For uniqueness, note that if T and T ′ are two maps satisfying the conditions. then for each

x∗ ∈ E∗,

⟨Tx, x∗⟩ = I(hx∗)(Tx) = I(OThx∗)(x) = I(hx∗)(T ′x) = ⟨T ′x, x∗⟩

for almost every x ∈ E. Now, since E∗ is weak∗ separable, we have that for almost every

x ∈ E, Tx = T ′x.

■

We now talk about ergodicity properties of abstract Wiener measures under orthogonal

transformations. In finite dimensions, as all radial processes are invariant under TO for every

O, we see that the orthogonal transformation of the Gaussian measure cannot be ergodic.

However, this is not true in infinite dimensions. We specifically claim that TO cannot be

ergodic if O has a non-trivial finite dimensional invariant subspace L, since then we would
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have an orthonormal basis {h1, h2, . . . , hn} of L, and the function
∑n

m=1 I(hm)2 is non-

constant and TO-invariant. Thus we arrive at the following theorem, which we state but do

not prove.

Theorem 2.10 Let (H,E,W) be an abstract Wiener space. If O is an orthogonal transfor-

mation on H with the property that, for every g, h ∈ H, limn→∞(Ong, h)H = 0, then TO is

ergodic.

■

This just provides us with a better picture of the Gaussian measure on infinite dimensional

spaces. We move on to generalize some popular finite dimensional properties of Gaussian

measures.

3 Large Deviations and Strassen’s Law

3.1 Large Deviation Theory

We now generalize the notion of large deviations and the law of iterated logarithms to any

abstract Wiener space. In particular, we see the following result:

Theorem 3.1 Let (H,E,W) be an abstract Wiener space, and for ϵ > 0, let Wϵ denote the

distribution obtained by transforming W by the map x 7→ ϵ
1
2x. Then, for any Γ ∈ BE,

− inf
h∈Γ̊

∥h∥2H
2

≤ lim inf
ϵ→0

ϵ logWϵ(Γ) ≤ lim sup
ϵ→0

ϵ logWϵ(Γ) ≤ − inf
h∈Γ

∥h∥2H
2

We will only show the lower bound proof here, and the proof for the upper bound, which is

significantly more involved, can be found in (Stroock, 2010, p 338).

For the lower bound, all we need to show is that for any h ∈ H and r > 0, we have

lim inf
ϵ→0

ϵ logWϵ(BE(h, r)) ≥ −∥h∥2H
2

(4)

Note that for any x∗ ∈ E∗ and δ > 0, using the Cameron-Martin formula,

Wϵ(BE(hx∗ , δ)) = W(BE(ϵ
− 1

2hx∗ , ϵ−
1
2 δ)) ≥ e−δϵ−1∥x∗∥E∗− 1

2ϵ
∥hx∗∥2HW(BE(0, ϵ

− 1
2 δ))
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Now, as {hx∗ : x∗ ∈ E∗} is dense in H, we have that for all h ∈ H and r > 0, there exists a

δ > 0 and hx∗ such that

BE(h, r) ⊇ BE(hx∗ , δ) and lim inf
ϵ→0

ϵ logWϵ(BE(hx∗ , δ)) ≥ −δ∥x∗∥E∗ − ∥h∥2H
2

Thus, by taking δ → 0, we get that (1) holds, and by extension, the lower bound of Theorem

3.1 holds as well.

■

Using this, we move to state a generalized version of the Law of Iterated Logarithms, enabling

us to get a sharper bound on asymptotic convergences in an abstract Wiener space. This was

first proved by Strassen for Brownian motion, and hence is called Strassen’s Law of Iterated

Logarithms (this is technically an extension of Strassen’s law, but the etymology remains).

Theorem 3.2 (Strassen’s Law) Suppose that W is a non-degenerate, centered, Gaussian

measure on the Banach space E, and let H be its Cameron-Martin space. Let {Xn : n ≥ 1}
be a sequence of independent, E-valued, W-distributed random variables on some probability

space (Ω,F ,P). Let Λn =
√
2n log(2)(n ∨ 3) and S̃n = 1

Λn

∑n
k=1Xk. Then, P-almost surely,

the sequence {S̃n : n ≥ 1} is relatively compact in E and the closed unit ball BH(0, 1)

in H coincides with its set of limit points. Equivalently, P-almost surely, limn→∞ ∥S̃n −
BH(0, 1)∥E = 0 and, for each h ∈ BH(0, 1), lim infn→∞ ∥S̃n − h∥E = 0.

■

This law has tremendous applications, even in the next section, to show convergence of some

unknown processes to the distributions of known ones, and to describe the magnitude of

fluctuations of the convergence.

4 Euclidean Free Fields

4.1 The Ornstein-Uhlenbeck Process

As we have built up some theory on abstract Wiener spaces, we now look at applications

of the same in the construction of quantum free fields (free in the sense that they don’t

interact). Our first example is that when the parameter set is one-dimensional and the

process is basically a variation of Brownian motion. It is called the Ornstein-Uhlenbeck
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Process.

Let x ∈ RN and θ ∈ Θ(RN). Consider the equation

U(t, x, θ) = x+ θ(t) +
1

2

∫ t

0

U(τ, x, θ) dτ, t ≥ 0

We can use Gronwall’s inequality to show that this equation has atmost one solution for a

fixed x and θ. Now, if we take U(t, 0, θ) = e−
t
2

∫ t

0
e

τ
2 dθ(τ), then by integrating by parts, we

get a unique solution to be

U(t, x, θ) = e−
t
2x+U(t, 0, θ)

This stochastic process {U(t, x) : t ≥ 0} under WN in particular, i.e., U(t, x, θ) where θ is a

centered Gaussain random variable, is called the Ornstein-Uhlenbeck process. We can look

at this process as a Brownian motion that has a restoring force applied to it that slowly

pushes it to the origin. So, locally, it looks like a Brownian motion, but goes to the origin

as t→ ∞.

Now, we can show that the span of {(ξ,U(t, 0))RN : t ≥ 0 & ξ ∈ RN} is a Gaussian family

in L2(WN ,R), and
Cov [U(s, 0),U(t, 0)] =

(
e−

|t−s|
2 − e−

t+s
2

)
In

Thus, as Gaussian measures are characterized by their mean and covariance, we see that

this process has the same distribution as {e− t
2B(et − 1) : t ≥ 0}, where {B(t) : t ≥ 0} is a

Brownian motion. Furthermore, we see that U(·, x) has the distribution γ
e−

t
2 x,(1−e−t)In

, so

as t→ ∞, we see that this distribution moves to the standard Gaussian on RN .

This motivates us to look at the process {UA(t) : t ≥ 0} under γ0,In ×WN , i.e., U(t, x, θ)

where x is a standard normal random variable and θ is a centered Gaussain random variable,

which we call the ancient Ornstein-Uhlenbeck process.

If {UA(t) : t ≥ 0} is an ancient Ornstein-Uhlenbeck process, then we see that the span of

{(ξ,UA(t))RN : t ≥ 0 & ξ ∈ RN} is a Gaussian family with covariance

Cov [UA(s),UA(t)] =
(
e−

|t−s|
2

)
In

So, if {B(t) : t ≥ 0} is a Brownian motion, then {e− t
2B(et) : t ≥ 0} is an ancient Ornstein-

Uhlenbeck process. Further, this process is also stationary and time-reversible.

We take this motivation to define another version of this process called the reversible

Ornstein-Uhlenbeck process. We define UR : [0,∞)× RN ×Θ(RN)2 → RN by

UR(t, x, θ+, θ−) =

UR(t, x, θ+) t ≥ 0

UR(−t, x, θ−) t < 0
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and we consider the process UR(·, x, θ+, θ−) under γ0,In×WN ×WN . This process also spans

a Gaussian family and has the same covariance as the ancient Ornstein-Uhlenbeck process,

but now it is for all s, t ∈ R, not just for positive s, t.
We can also view this process another way. By starting with a Brownian motion {B(t) : t ≥
0}, we get a reversible Ornstien-Uhlenbeck process by looking at {e− t

2B(et) : t ∈ R}.
Now that we are familiar with the Ornstien-Uhlenbeck process (I will refer to it as the OU

process from now on), we start to characterize it formally.

4.2 The OU Process as an abstract Wiener process

We aim to show that both the one-sided and the reversible OU processes are indeed abstract

Wiener processes. We start with the one-sided OU process {U(t, 0) : t ≥ 0} which can be

written as {e− t
2B(et − 1) : t ≥ 0}. Thus we should look at the Hilbert space HU(RN) of

functions hU(t) = e−
t
2h(et − 1), where h ∈ H(RN) is the Cameron-Martin space for the

classical Wiener measure. Thus, we define a map FU : H(RN) → HU(RN) and define a

norm ∥ · ∥HU that makes FU an isometry. We get

∥hU∥2HU (RN ) =

∫
[0,∞)

[
d

ds

(
(1 + s)

1
2hU(log(1 + s))

)]2
ds

= ∥ḣU∥2L2([0,∞),RN ) + (ḣU , hU)L2([0,∞),RN ) +
1

4
∥hU∥2L2([0,∞),RN )

Now, we can see that (ḣU , hU)L2([0,∞),RN ) = 0, (we use the fact that limt→∞ |hU(t)| is equiv-
alent to limt→∞ t−

1
2 |h(t)|, which goes to 0 for h ∈ H(RN)). Thus,

∥hU∥HU (RN ) =

√
∥ḣU∥2

L2([0,∞),RN )
+

1

4
∥hU∥2

L2([0,∞),RN )

The usual proof now completes HU with respect to this norm, but we know that the OU

process lives on ΘU(R,RN), the space of θ ∈ Θ(RN) such that limt→∞(log t)−1|θ(t)| = 0 with

Banach norm ∥θ∥ ≡ supt≥0(log(e+ t))
−1|θ(t)|, so we take that as our Banach space. We now

state the following fact. The proof of this can be found in (Stroock, 2010, p 347).

Thus, we arrive at the following theorem, which gives us formal infrastructure to work on

the OU process, and to define the quantum field where this resides.

Theorem 4.1 Let UN be the distribution of {U(t, 0) : t ≥ 0} under WN . Then, the triple

(HU(RN),ΘU(R,RN),UN) is an abstract Wiener space. Further, let H1(R,RN) be the space
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of absolutely continuous h satisfying

∥h∥H1(R,RN ) =

√
∥ḣ∥2

L2(R,RN )
+

1

4
∥h∥2

L2(R,RN )

Let UN
R be the distribution of {UR(t) : t ∈ R} under γ0,In × WN × WN . Then, the triple

(H1(R,RN),ΘU(R,RN),UN
R ) is an abstract Wiener space.

■

This was an example to show the wide applications of this thoery. We now move to the case

when the parameter set is not one-dimensional, and attempt to construct higher dimension

free fields.

4.3 Higher Dimension Free Fields

We now want to look at an analogue of the OU process when N = 1 and the parameter

set has dimension ν > 1. We will need very nice functions for this, as just L2-ness will not

work. Thus, we turn to the Schwartz function space, which is the space of all functions who’s

derivative is rapidly decreasing. We will show that this choice actually works. Our idea is to

complete the Schwartz function space with respect to a particular norm to create a Banach

space where our distribution will live. We start by looking at the space H1(Rν ,R) which is

the space obtained by completing the Schwartz function space S(Rν ,R) with respect to the

norm

∥h∥H1(Rν ,R) =

√
∥∇h∥2L2(Rν ,R) +

1

4
∥h∥2L2(Rν ,R)

But there is a problem with this. When ν ≥ 2, we see that there are some elements of

H1(Rν ,R) that are not even defined pointwise, much less be continuous. Thus, to construct

an abstract Wiener space, we have to look at Banach spaces which have generalized functions.

We approach it as follows:

Define Bessel’s operator Bs on S(Rν ,C) such that the Fourier transform of Bs is

Bsϕ
∧

(ξ) = (
1

4
+ |ξ|2)−

s
2ϕ
∧
(ξ)

In particular, we see that ∥ϕ∥H1(Rν ,R) = ∥B−1ϕ∥L2(Rν ,R) ∀ ϕ ∈ S(Rν ,R).
We now move to define the space Hs(Rν ,R) to be the separable Hilbert space obtained by

completing S(Rν ,C) with respect to the following norm

∥h∥Hs(Rν ,R) = ∥B−sh∥L2(Rν ,R) =

√
1

(2π)ν

∫
Rν

(
1

4
+ |ξ|2)s|ĥ(ξ)|2 dξ
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When s = 0, this space is just L2(Rν ,R). In general, for s ∈ R, we see that Hs(Rν ,R) ⊆
[S(Rν ,R)]∗. In fact, we can also see that Hs(Rν ,R) is the isometric image of L2(Rν ,R) under
the map Bs, i.e., Hs(Rν ,R) = Bs(L2(Rν ,R)).In general, Hs2(Rν ,R) = Bs2−s1(Hs1(Rν ,R)).
Thus we have an isometric isomorphism between any two spaces Hs1 and Hs2 and therefore,

if we are able to construct an abstract Wiener space for any s ∈ R, we can construct them

all as long as we know how Bessel’s operator acts on the space.

We end the section and the report with two theorems on the construction of an abstract

Wiener space which are pretty involved, hence the proofs will not be mentioned here. They

can be found in (Stroock, 2010, p 350) and (Stroock, 2010, p 352).

Theorem 4.2 The space H
ν+1
2 (Rν ,R) is continuously embedded as a dense subspace of the

separable Banach space C0(Rν ,R) whose elements are continuous functions that tend to 0 at

infinity and whose norm is the uniform norm. Moreover, given a totally finite, signed Borel

measure λ on Rν, the function

hλ(x) ≡
π

1−ν
2

Γ(ν+1
2
)

∫
Rν

e−
|x−y|

2 λ (dy)

is an element of H
ν+1
2 (Rν ,R), and

∥hλ(x)∥
H

ν+1
2 (Rν ,R)

=
π

1−ν
2

Γ(ν+1
2
)

∫∫
Rν×Rν

e−
|x−y|

2 λ (dx)λ (dy)

and

⟨h, λ⟩ = (h, hλ)
H

ν+1
2 (Rν ,R)

for each h ∈ H
ν+1
2 (Rν ,R)

■

The next theorem allows us to extend our study of the OU process to parameter sets of more

than one dimension, and we will see analogous results here.

Theorem 4.3 Let Θ
ν+1
2 (Rν ,R) be the space of continuous θ : Rν → R satisying lim|x|→∞(log(e+

|x|))−1|θ(x)| = 0 and construct a separable Banach space from this using the norm ∥θ∥
Θ

ν+1
2 (Rν ,R)

=

supx∈RN (log(e+ |x|))−1|θ(x)|. Then, H ν+1
2 (Rν ,R) is contiunuously embedded as a dense sub-

space of Θ
ν+1
2 (Rν ,R) and there is a W

H
ν+1
2 (Rν ,R)

such that the triple

(H
ν+1
2 (Rν ,R),Θ

ν+1
2 (Rν ,R),W

H
ν+1
2 (Rν ,R)

)
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is an abstract Wiener space. Moreover, for each α ∈ (0, 1
2
), almost every θ is Hölder con-

tinuous of order α, and for each α > 1
2
, almost no theta is anywhere Hölder continuous of

order α.

■

Thus, we are able to construct higher dimension free fields of any dimension ν using Bessel’s

operator.

Abstract Wiener spaces are very powerful, and we have only seen limited applications here.

Further study is to be done to study the consequences and applications of this idea of an

abstract Wiener space.
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Introduction

This reading project is based off of Chapter 10 of the 2nd edition of ’Probability Theory - an
Analytic View’ by Daniel W. Stroock.
Our aim in this report is to build a bridge between partial differential equations and Brownian
motion. This will provide a computational tool to the probabalists in the sense that the usual
Wiener integrals reduce to solving a partial differential equation, while it provides a different
representation of classical PDE solutions which give rise to more nuanced properties, We start
with martingales and their connection with typical PDE’s, and then move on to extending
martingale representations, and then give the Arcsine law. Then we go on to recurrence,
transience and the Markov property of the Wiener measure and end with some other heat
kernels that result from the above properties.

1 Martingales and Partial Differential Equations

The connection between Brownian motion and PDE’s originates from the fact that the Gauss
kernel

g(N)(t, x) = (2πt)−
N
2 e−

|x|2
2t , (t, x) ∈ (0,∞)× RN

is simultaneously the density for the normal distribution γ0,tI and the solution to the heat
equation ∂tu = 1

2
∆u in (0,∞) × R with initial condition δ0. Moreover, if ϕ ∈ Cb(RN ,R),

then
uϕ(t, x) =

ˆ
RN

g(N)(t, y − x)ϕ(y)dy

is the only bounded u ∈ C1,2((0,∞) × RN ,R) that solves that Cauchy IVP ∂tu = 1
2
∆u in

(0,∞) × RN with limt→0 u(t, ·) = ϕ uniformly on compacts. Proving that u is a solution
is trivial, but uniqueness isn’t. But if one assumes a little more about u, i.e., that u ∈
C1,2
b ([0,∞)×RN ,C), then theorem 7.16 of Stroock, 2010 tells us that when (B(t),Ft,P) is a

Brownian motion, for each T > 0, (u(T − T ∧ t, x+B(t ∧ T )),Ft,P) is a martingale. Thus,

u(T, x) = E[ϕ(B(T ))] =

ˆ
RN

ϕ(x+ y)γ0,tI(dy) = uϕ(T, x)

). Ahead, we state a refinement of Theorem 7.1.6 that will enable us to remove the assump-
tion that the derivatives of u are bounded.
As we see, probability theory offers us a way to lift questions about PDE’s to the pathspace
setting, and martingales are the perfect vehicale to do so. We now move on to some inter-
esting properties about them.
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1.1 Localizing and Extending Martingale Representations

We will now try to obtain a quite general way to represent solutions to PDE’s as a Wiener
integral. The proofs for all these theorems can be found in Stroock, 2010. From now on, we
will look at WN as a Borel measure on the Polish space C(RN), because we want to consider
all translates WN

x of WN , i.ie. all distributions of ψ 7→ x+ψ under WN . As the translation
map is continuous, the resulting function is still Borel measurable.

Theorem 1.1 Let G be a non-empty open subset of R × RN , and, for s ∈ R, define ζGs :

C(RN) → [0,∞) by
ζGs (ψ) = inf{t ≥ 0 : (s+ t, ψ(t)) /∈ G}

Further, suppose that V : G → R is a Borel measurable function that is bounded above on
the whole of G and bounded below on each compact subset of G, and set

EV
s (t, ψ) = exp

(ˆ t∧ζGs

0

V (s+ τ, ψ(τ))dτ

)
If w ∈ C1,2(G,R) ∩ Cb(G,R) satisfies (∂t +

1
2
∆ + V )w ≥ f on G, where f : G → R is a

bounded Borel measurable function, then(
EV
s (t, ψ)w(s+ t ∧ ζGs (ψ), ψ(t ∧ ζGs ))−

ˆ t∧ζGs (ψ)

0

EV (τ, ψ)f(S + τ, ψ(τ)),Ft,WN
x

)
is a submartingale for every (s, x) ∈ G. In particular, if (∂t + 1

2
∆+ V )w = f on G, then the

above triple is a martingale.
■

The most important corollary of this is the famous Feynman-Kac formula.

Lemma 1.2 Let V : [0, T ] × RN → R be a Borel measurable function that is uniformly
bounded above everywhere and bounded below uniformly on compacts. If u ∈ C1,2((0, T ) ×
RN ,R) is bounded and satisfies the Cauchy IVP ∂tu = 1

2
δu + V u + f in (0, T ) × RN with

limt→0 u(t, ·) = ϕ uniformly on compacts for some bounded, borel measurable f : [0, T ]×RN →
R and ϕ ∈ Cb(RN ,R), then

u(T, x) = EWN
x

[
e
´ T
0 V (τ,ψ(τ))dτϕ(ψ(T ))

]
+ EWN

x

[ˆ T

0

e
´ T
0 V (τ,ψ(τ))dτf(t, ω(t))dt

]

■
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1.2 Minimum Principles

We now mention the weak and strong maximum principles in the context of the Wiener
measure. The proof is quite elegant and is mentioned in Stroock, 2010.

Theorem 1.3 (Weak Maximum Principle) Let G be a non-empty open subset of R ×
RN , and let V be a function of the sort described above. Further, suppose that (s, x) ∈ G is
a point at which

WN
x (∃ t ∈ (0,∞) : (s− t, ψ(t)) /∈ G) = 1

If u ∈ C1,2(G,R) is bounded below and satisfies ∂tu− 1
2
∆u− V u ≥ 0 in G and if, for every

(t0, y0) ∈ ∂G, lim inf(t,y)→(t0,y0) u(t, y) ≥ 0, with t0 < s, then u(s, x) ≥ 0. ■

Theorem 1.4 (Strong Maximum Principle) Let G be a non-empty open subset of R×
RN , and let V be a function of the sort described above. Further, suppose that (s, x) ∈ G is
a point at which

WN
x (∃ t ∈ (0,∞) : (s− t, ψ(t)) /∈ G) = 1

If u ∈ C1,2(G,R) is bounded below and satisfies ∂tu− 1
2
∆u− V u ≥ 0 in G and if, for every

(t0, y0) ∈ ∂G, lim inf(t,y)→(t0,y0) u(t, y) ≥ 0, with t0 < s, then u(s, x) ≥ 0. ■

The proof of Theorem 1.3 is a direct application of Theorem 1.1 and Fatou’s Lemma. While
Theorem 1.4 is stronger and seems like it completely takes over from the Weak Maximum
principle, the weak maximum principle has more applicability due to its weaker pre-requisites.
In particular, the weak maximum principle does not require that the function actually attains
its minimum, while the strong maximum principle does. We have shown that the Wiener
measure is a centered Gaussian measure on a Banach

1.3 The Arcsine Law

Now for particular functions, there are very few V’s for which explicit solutions can be
written down for PDE’s of the form ∂tu = 1

2
∆u+V u. However, if V is independent of t, and

when N = 1, then there exists a closed form solution. We show this by taking the Laplace
Transform Uλ of u, and the PDE reduces to the ODE

(λ− 1

2
∆− V )Uλ = f
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Thus, we can use the Feynman-Kac formula to find a closed form solution for Uλ and then
u. This reasoning is what prompted the derivation of the Arcsine law.

Theorem 1.5 (Arcsine Law) For every T ∈ (0,∞) and α ∈ [0, 1],

W1

({
ψ ∈ C(R :

1

T

ˆ T

0

1[0,∞)(ψ(t))dt ≤ α

})
=

2

π
arcsin(

√
α)

The proof of this theorem is done by taking a double Laplace transform of the distribution
function

F (α) = W1

({
ψ ∈ C(R :

1

T

ˆ T

0

1[0,∞)(ψ(t))dt ≤ α

})

■

An important corollary of the above, using Donsker’s Invariance Principle, is as follows.

Lemma 1.6 If {Xn : n ≥ 1} is a sequence of independent, uniformly square integrable
random variables with mean value 0 and variance 1 on some probability space (Ω,F ,P),
then, ∀ α ∈ [0, 1],

lim
n→∞

({
ω :

Nn(ω)

n
≤ α

})
=

2

π
arcsin(

√
α)

where Nn(ω) is the number of m ∈ Z+∩[0, n] for which Sm(ω) ≡
∑m

l=1Xl(ω) is non-negative.

The reason this law is well-known is due to the startling result that follows from it - that
given a fixed δ ∈ (0, 1

2
), the α which minimizes limn→∞ P(Nn

n
∈ (α − δ, α + δ)mod1) is not

0.5, as people normally think (due to the Law of Large Numbers), but it is equally likely to
be either 0 or 1. There are many other interesting applications of this in other fields as well.

1.4 Recurrence and Transience of Brownian Motion

We now see results about the recurrence and transience of Brownian motion derived through
PDE’s.

Theorem 1.7 For r ∈ [0,∞), define ζr(ψ) = inf{t ∈ [0,∞) : |ψ(t)| = r}, ψ ∈ C(RN).
Then, for |x| < r,
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EWN
x [ζr] =

r2 − |x|2

N

EWN
x [ζ2r ] =

(N + 4)r2 −N |x|2

N2(N + 2)
(r2 − |x|2)

In addition, if 0 < r < |x| < R <∞, then

WN
x (ζr < ζR) =



R−|x|
R−r N = 1

log(R)−log(|x|)
log(R)−log(r)

N = 2

(
r
|x|

)N−2
RN−2−|x|N−2

RN−2−rN−2 N ≥ 3

In particular,

W1
x(ζ0 <∞) = 1 ∀ x ∈ R

W2
x(ζ0 <∞) = 0, x ̸= 0 but W2

x(ζr <∞) = 1, x ∈ R2, r > 0

WN
x (ζr <∞) =

(
r
|x|

)N−2

0 < r < |x|, N ≥ 3

Finally, we see that if N ≥ 3,

WN
x

(
lim
t→∞

|ψ(t)| = ∞
)
= 1, x ∈ RN

Thus, we see that in 1 and 2 dimensions, Brownian motion is always recurrent, however, in
all dimensions greater than 3, it is transient.

2 The Markov Property and Potential Theory

2.1 The Markov Property for Wiener Measure

We now give the Markov property for the Wiener measure and use it to connect Brownian
motion to potential theory and PDE’s.
We need some notation first. Denote the time-shift map by Σt : C(RN) → C(RN), where
Σt(ψ(τ)) = ψ(t + τ), τ ∈ [0,∞). Further, if ζ is a stopping time, then Σζ : {ψ : ζ(ψ) <

∞} → C(RN) is given by Σζ(ψ(t)) = ψ(ζ(ψ) + t).
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Theorem 2.1 If ζ is a stopping time and F : C(RN) × C(RN) → [0,∞) is a Fζ × FC(RN )

function, then
ˆ
{ψ:ζ(ψ)<∞}

F (ψ,Σζ(ψ))WN
x (dψ) =

ˆ
{ψ:ζ(ψ)<∞}

(ˆ
C(RN )

F (ψ, ψ′)WN
ψ(ζ)(dψ

′)

)
WN

x (dψ)

Theorem 2.1 is essentially the Markov property for the Wiener measure. More precisely, it
is the Strong Markov Property for the Wiener measure.

2.2 The Dirichlet Problem

We now move to probably the most successful application of probability theory to PDE’s.
We start with some notation and introduction.
Let G be a non-empty, open, connected subset of RN . Given an f ∈ Cb(G,R), we say
that u ∈ C2(G,R) solves the Dirichlet problem for f in G if ∆u = 0 in G and for each
a ∈ ∂G, u(x) → f(a) if x ∈ G→ a. The weak maximum principle says that there is atmost
one solution to the Dirichlet problem for a fixed f ∈ Cb(G,R).
We call a function u harmonic on a set G if u ∈ C2(G,R) and ∆u = 0. Also, if µ is a
non-zero finite measure on E and f : E → R is µ-integrable, then we denote

 
fdµ =

1

µ(E)

ˆ
fdµ

Finally, ζG : C(RN) → [0,∞], given by ζG(ψ) = inf{t ≥ 0 : ψ(t) /∈ G} denotes the first exit
time from G.

Theorem 2.2 Let G be a non-empty subset of RN . If u ∈ Cb(G,R), and u ↾ G is harmonic,
and x ∈ G such that WN

x (ζG <∞) = 1, then

u(x) = EWN
x [u(ψ(ζG)), ζG <∞]. (1)

In particular, if u is harmonic on G, then

B(x, r) is a compact subset of G =⇒ u(x) =

 
SN−1

u(x+ rω)λSN−1(dω). (2)

Conversely, if u : G → R is a locally bounded Borel measurable function that satisfies (2),
then u ∈ C∞(G,R) and u is harmonic. Finally, if ∂G → R is a bounded, Borel measurable
function then the function u : G→ R given by (1) is a bounded harmonic function on G.
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Thus, if the above holds for all x ∈ G, and we wish to solve the Dirichlet problem for a fixed
f, we just have to show that u given by (1) above is a solution. As we already know that
this is harmonic, all that remains is to do is find conditions when it satisfies the boundary
conditions of the Dirichlet problem.
We will show that if f is continuous at a ∈ ∂G and if

lim
x→a
x∈G

WN
x (ζG ≥ δ) = 0 ∀ δ > 0,

then the function u tends to f(a) as x → a through G. Thus, we call a point a ∈ ∂G, a
regular point if the above holds, and we denote it by a ∈ ∂regG.
Let ζGs = inf{t ≥ s : ψ(t) /∈ G} be the first exit time from G after time s. We now have the
following lemma:

Lemma 2.3 Regularity is a local property in the sense that, for each r ∈ (0,∞), a ∈
∂regG if and only if a ∈ ∂reg(G ∩ B(a, r)). Furthermore, a ∈ ∂regG ⇐⇒ a ∈ ∂G

and WN
a ([lims→0 ζ

G
s ] > 0) = 0, which implies that ∂regG is Borel measurable. Finally, if

a ∈ ∂regG, then for each δ > 0,

lim
x→a
x∈G

WN
x ((ζG, ψ(ζG)) ∈ (0, δ)×B(a, δ)) = 1.

Now, directly from Theorem 2.2 and Lemma 2.3, we get the following theorem which classifies
the boundary conditions for the Dirichlet problem in terms of regular points.

Theorem 2.4 Let G be a non-empty open subset of RN and f : ∂G→ R be a bounded, Borel
measurable function. If u is given by Theorem 2.2, then u is a bounded harmonic function
in G, and, for every a ∈ ∂regG at which f is continuous, u(x) → f(a) as x→ a through G.

Thus, we have completely classified the solution to the Dirichlet problem in terms of probabil-
ity theory and have given a closed form explicit solution along with the boundary conditions.

3 Other Heat Kernels

Our whole motivation for connecting probability theory and PDE’s was that the heat kernel
had the same form as the Gaussian distribution, or more appropriately, if ϕ ∈ Cb(RN ,R),
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then the unique solution to the heat equation that tends to ϕ as t→ 0 is

u(t, x) =

ˆ
RN

ϕ(y)gN(t, y − x)dy

where gN(t, y − x) is the probability of a Brownian path going from x to y in time t.
We now look at some other functions that are both fundamental solutions to the heat equa-
tion, and the density of a Brownian motion transitioning at the same time, under different
conditions.

3.1 A General Construction

For each t > 0, let Et : C(RN ,R) → [0,∞) be a Ft-measurable function such that

Es+t(ψ) = Es(ψ)Et(Σs(ψ)), s, t ∈ (0,∞), ψ ∈ C(RN)

and define

q(t, x, y) = EWN

[Et(x(1− lt) + θt + ylt)] g
N(t, y − x), (t, x, y) ∈ (0,∞)× RN × RN

where lt(τ) = τ∧t
t
, τ ∈ [0,∞) and θt = θ − θ(t)lt, θ ∈ Θ(RN). The following theorem

characterizes this function.

Theorem 3.1 For each t ∈ (0,∞) and Borel measurable ϕ : RN → R that is bounded below,
ˆ
RN

ϕ(y)q(t, x, y)dy = EWN
x [Et(ψ)ϕ(ψ(t))] .

Moreover, for all s, t ∈ (0,∞), and x, y ∈ RN , q satisfies the Chapman-Kolmogorov Equation,

q(s+ t, x, y) =

ˆ
RN

q(s, x, z)q(t, z, y)dz.

Finally, if, for each t > 0, Et is reversible in the sense that

Et(ψ) = Et(ψ̃
t), ψ ∈ C(RN),

where ψ̃t(τ) = ψ(t − t ∧ τ), τ ∈ [0,∞), then q(t, x, y) = q(t, y, x) for all (t, x, y) ∈ (0,∞) ×
(RN)2.

Thus, we see that q(t, x, y) could be proposed as an alternate heat kernel. We now look at
a particular example, i.e., the Dirichlet Heat Kernel.
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3.2 The Dirichlet Heat Kernel

Let G be a non-empty open subset of RN , and set EG
t (ψ) = 1(t,∞)(ζ

G(ψ)). We can see that
this function satisfies all the necessary properties. Denoting the corresponding q(t, x, y) by
pG(t, x, y), we see that pG(t, x, y) = 0 unless x, y ∈ G. Further, we see by the above theorem
that

´
G
ϕ(y)pG(t, x, y)dy = EWN

x
[
ϕ(ψ(t)), ζG(ψ) > t

]
, (t, x) ∈ (0,∞)×G,

pG(s+ t, x, y) =
´
G
pG(s, x, z)pG(t, z, y)dz, (s, x), (t, y) ∈ (0,∞)×G,

pG(t, x, y) = pG(t, y, x) (t, x, y) ∈ (0,∞)×G2

Further work is required to show that it is smooth, and is given in Stroock, 2010.
The reason we call it the Dirichlet Heat Kernel is the following theorem.

Theorem 3.2 For each ϕ ∈ Cb(G,R), the function u(t, x) = EWN
x
[
ϕ(ψ(t)), ζG(ψ) > t

]
is a

smooth solution to the boundary value problem

∂tu(t, x) =
1

2
∆u(t, x) in (0,∞)×G,

lim
t→0

u(t, ·) = ϕ uniformly on compacts,

lim
(t,x)→(s,a)

x∈G

u(t, x) = 0 (s, a) ∈ (0,∞)× ∂regG.

Moreover, if ∂G = ∂regG, then u is the only bounded solution to the BVP.

3.3 Feynman-Kac Heat Kernels

Let V : RN → R be a Borel measurable function that is bounded above, and define

qV (t, x, y) = EWN

[
exp

(ˆ t

0

V (x+ θt + (y − x)lt(τ)dτ

)]
gN(t, y − x).

By letting Et(ψ) ≡ exp
(´ t

0
V (ψ(τ))dτ

)
, we see that all the required properties in Theorem

3.1 are satisfied. We further see that if u ∈ C1,2
b ((0,∞)× RN ,R) saatisfies the Cauchy IVP

∂tu =
1

2
∆u+ V u with lim

t→0
u(t, ·) = ϕ uniformly on compacts.
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for some ϕ ∈ Cb(RN ,R), then

u(t, x) =

ˆ
RN

ϕ(y)qV (t, x, y)dy (t, x) ∈ (0,∞)× RN .

Under some more suitable conditions, we can show that the RHS of the above equation is
necessarily the solution of the IVP, and for that reason, qV is called the Feynman-Kac
Heat Kernel with potential V.
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