
ERC OPTIMIZATION WITH ADDITIONAL
CONSTRAINTS

Using the SCRIP Algorithm to find the optimal portfolio under
multiple user defined constraints

Introduction

Portfolio optimization has been an area that has been explored widely in the past
few years, with many novel ideas and interesting optimization methods being cre-
ated. One such portfolio is the Equal Risk Contribution (ERC) or Risk Parity (RP)
portfolio, which operates with the intent of assigning an equal amount of risk to each
instrument in the portfolio. However, the ERC optimization currently used at SG
operates with a long-only constraint, that is, it doesn’t allow short selling of any
kind. Another constraint is that the risk contributions are constrained to be exactly
equal for all the securities, and customization of the same isn’t viable.
This modified ERC optimization, called the Successive Convex Optimization for Risk
Parity Portfolios (SCRIP) Algorithm, allows for vast flexibility in allowing short
selling, choosing a target volatility, target risk contributions, target expected return
and more. While it does have some drawbacks, it is very versatile and can be used
to great effect at SG.

The Original ERC Strategy

Markowitz optimization aims to solve the following optimization problem:

𝑚𝑖𝑛𝑥 x𝑇 𝛴x
𝑠.𝑡. 𝑥𝑖 ≥ 0

x𝑇 1 = 1
with 𝑥 being the weights and 𝛴 being the covariance matrix. The optimal solution
here turns out to be the one where the marginal risk contributions of each security
is the same, i.e,

𝜕𝜎
𝜕𝑥𝑖

= 𝜕𝜎
𝜕𝑥𝑗

∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}
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The RP approach, however, involves optimizing the weights such that the contribu-
tion of each security to the total volatility is the same, i.e,

𝑥𝑖.
𝜕𝜎
𝜕𝑥𝑖

= 𝑥𝑗.
𝜕𝜎
𝜕𝑥𝑗

∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}

The derivation of this result comes from Euler’s Theorem, and can be found in [1].
The convex optimization problem to be solved to get the RP portfolio is the following:

𝑚𝑖𝑛𝑥
𝑛

∑
𝑖=1,𝑗=1

(𝑥𝑖(𝛴𝑥)𝑖 − 𝑥𝑗(𝛴𝑥)𝑗)2

𝑠.𝑡. 𝑥𝑖 ≥ 0
𝑛

∑
𝑖=1

𝑥𝑖 = 1

where ℛ(𝑥) = ∑𝑛
𝑖=1,𝑗=1(𝑥𝑖(𝛴𝑥)𝑖 − 𝑥𝑗(𝛴𝑥)𝑗)2 is the risk concentration function

counting the total deviation from the theoretical RP condition. This method guaran-
tees a solution as the convex optimization always has a unique global minimum. The
proof of this can be found in [1] as well. This method is currently being used in the
SG strategies such as the Harmonia, and is only valid for non-negative weights. In
the next section we extend this strategy and remove the constraints on the weights
to make it more versatile, and also describe a new optimization method to solve the
problem.

The Proposed RP Strategy
This method is credited to Profs. Feng and Palomar in [2].
In this general approach, the problem we look to solve is the following non-convex
nonlinear optimization problem:

𝑚𝑖𝑛𝑥 ℛ(x) + 𝜆𝐹(x)
𝑠.𝑡. 𝑥𝑖 ∈ 𝒳

x𝑇 1 = 1

where:
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• ℛ(x) denotes the risk concentration function. ℛ(x) is also written as ∑𝑛
𝑖=1(𝑔𝑖(𝑥))2,

where 𝑔𝑖(𝑥) measures the risk concentration brought about by the i-th asset

• 𝒳 is a convex set of possible values of x. It represents the investor’s profiles,
capital limitations, market regulations, etc.

• 𝐹(x) is a convex function and denotes the portfolio preference, i.e, what the
investor prefers to minimize. It could be the expected loss 𝜇𝑇 x or the variance
x𝑇 𝛴x or a combination of both, etc.

• 𝜆 ≥ 0 is the trade off between the portfolio preference and risk concentration.

This is a very general problem and allows for vast manipulations, and this has been
discussed in detail in [2].
What we look at is the direct extension of the long-only strategy to this case, which
gives:

𝑚𝑖𝑛𝑥
𝑛

∑
𝑖=1,𝑗=1

(𝑥𝑖(𝛴𝑥)𝑖 − 𝑥𝑗(𝛴𝑥)𝑗)2 − 𝜆𝜇𝑇 x + 𝜃x𝑇 𝛴x

𝑠.𝑡. 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖
x𝑇 1 = 1

with 𝜆 ≥ 0, 𝜃 ≥ 0, 𝑎𝑖, 𝑏𝑖 ∈ ℝ
This is a highly non-convex optimization problem, and thus faces a very important
hurdle : the issue of local minima.
As this function is non-convex, it is not required to (and in most cases does not) have
a unique global minimum, but rather possesses multiple local minima. The usual
non-convex algorithms like SQP and IMP fail to tackle this issue concretely, and are
very inefficient in solving this problem. Thus, a new algorithm was developed in
[2] by Feng and Palomar called the SCRIP Algorithm which is much more efficient,
although not perfect, at solving this problem. I provide a brief description of the
alorithm below, but the details are left out (they can be found in [2]).
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The SCRIP Algorithm

For 𝑘 ≥ 0, the algorithm solves the following problem 𝑃 𝑘:

𝑚𝑖𝑛𝑥
𝑛

∑
𝑖=1

(𝑔𝑖(𝑥𝑘) + (∇𝑔𝑖(𝑥𝑘))𝑇 (𝑥 − 𝑥𝑘))2 + 𝜏
2 ∥(𝑥 − 𝑥𝑘)∥2

2 + 𝜆𝐹(x)

𝑠.𝑡. 𝑥𝑖 ∈ 𝒳
x𝑇 1 = 1

where 𝜏 ≥ 0 is the regularization parameter.
This method convexifies the original risk concentration function by linearizing it by
adding the gradient and then adding the proximal term for convergence.
The neat feature of this is that the first term has the same gradient as the original
risk concentration function, which is why the algorithm works efficiently.
This problem is a standard convex optimization and can be done in many ways by
efficient solvers.
The SCRIP Algorithm is the following:

• Select 𝑘 = 0, 𝜏 > 0, 𝑥0 ∈ {𝑥𝑇 1 = 1} ∩ 𝒳, {𝛾𝑘}𝑘∈ℕ > 0

• Solve 𝑃 𝑘 repeatedly to get the optimal solution ̂𝑥𝑘

• Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘( ̂𝑥𝑘 − 𝑥𝑘)

• Repeat until convergence.

Convergence and Other Advanced Algorithms

The convergence analysis is done in detail in [2], and under some pretty standard
constraints followed by almost all portfolio design objects, there is a global stationary
point that the algorithm will converge to.
Other advanced versions of this algorithm exist and can be examined as well for any
efficiency time saves in the future. Some of these are also available in [2].
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Code and Simulation

There currently is a package called ’RiskPartyPortfolio’ in both R and Python
that is able to perform the SCRIP optimization and return the optimal weights. The
Python package, however, does not currently run on Windows PCs due to the lack
of availability of a certain prerequisite package that it is built upon (jaxlib). The
packages themselves can be found at [3] and [4].
I ran a small simulation of this strategy on a portfolio of 3 securities - the EuroStoxx
50 Index, the Nikkei 225 Index and AAPL stock (these were arbitrarily chosen).
After acquiring the data on the performance of these securities in the past 5 years
from public sources, I then calculated the covariance matrix using R’s inbuilt stat-
istics library (I did not use a rolling window, however that would be the next step
up in complexity in a simulation).
I then ran the RiskParityPortfolio package on said covariance matrix, also account-
ing for the expected returns of the securities. I varied the Lagrange parameter from
10−5 to 100 and plotted the various risk concentrations versus expected returns.
I did this in 3 cases :

1. The standard ERC algorithm, with the long-only constraint

2. The RP strategy with lower and upper bounds of -1 and 1 respectively

3. The RP strategy, but scaled up to allow lower and upper bounds of -20 and 20
respectively.

The code and the plotted results are shown in the Appendix.
The plots show that at risk concentrations of about 10−5, Case 1 and Case 2 have
expected returns of about 0.65% and 1.4% respectively. Case 3 is simply a scaled
up version of Case 2, allowing for larger returns at proportionately higher risk con-
tributions.
Further evidence of the new RP strategy’s efficacy is found when we fit a volatility
cap of 2.7% (this was manually done and the number was arbitrarily chosen). The
results are summarised in the 3 tables below.

Thus it is clearly visible that cases (2) and (3) greatly outperformed case (1) and have
a wider variety of expected returns obtainable based on the investors’ anticipations,
needs and desires.
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Statistic 1Y 3Y 5Y
Return -0.194% 1.27% 0.81%

Volatility 1.53% 1.05% 1.04%
Sharpe Ratio -0.127 1.216 0.784

Table 1: The Original Long Only ERC Strategy

Statistic 1Y 3Y 5Y
Return 0.375% 3.14% 1.9%

Volatility 2.65% 2.27% 2.03%
Sharpe Ratio 0.141 1.384 0.94

Table 2: The New RP Strategy with bounds of -1 and 1

Statistic 1Y 3Y 5Y
Return 0.195% 3.73% 2.02%

Volatility 2.24% 2.66% 2.13%
Sharpe Ratio 0.087 1.4 0.946

Table 3: The New RP Strategy with bounds of -20 and 20

Conclusion

To conclude, I believe that this optimization technique has the potential to outper-
form the current techniques in many of SG’s flagship indices and allow for more
versatility, with the possibility of higher returns at a specified risk concentration and
volatility.
The salient feature of this algorithm is that even in the worst case scenario, it per-
forms at a level equal to that which is currently in practice in SG Harmonia, and
can only produce better (or equally as good) returns.
Introducing this optimization strategy into SG’s indices will open up new possibilit-
ies that were previously unavailable, and thus, this technique may be used to achieve
a performance better than that of the current indices.
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Appendix

Plots of the Simulation
Please find the plots and the code overleaf.
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Figure 1: The Old ERC Strategy
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Figure 2: The New RP Strategy
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Figure 3: The New Scaled Up RP Strategy
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